Calculation Policy Dorchester Primary School

Written: April 2023
Review April 2026

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole (part-part-whole model). Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Expanded column method (no regrouping).	Column method with regrouping (up to 3 digits).	Column method with regrouping (up to 4 digits).	Column method with regrouping (with more that 4 digits including decimals).	Column method with regrouping (with more than 4 digits including decimals).
Subtraction	Taking away ones. Counting back. Finding the difference. Making 10.	Counting back. Finding the difference. Making 10. Partitioning smallest number to subtract.	Column method with regrouping (up to 3 digits).	Column method with regrouping (up to 4 digits)	Column method with regrouping (with more than 4 digits including decimals)	Column method with regrouping (with more than 4 digits including decimals)
Multiplication	Doubling. Counting in multiples of 2,5 and 10 . Arrays (with support.)	Doubling. Counting in multiples of 2, 3, 5 and 10. Repeated addition. Arrays showing commutative law.	Counting in multiples of 2,3 , $4,5,8$ and 10. Repeated addition. Arrays. Grid method.	Column multiplication (2 and 3 digit x 1 digit)	Column multiplication (up to 4 digit $\times 1$ or 2 digits)	Column multiplication (multi-digit up to 4 digits by 2 digits)
Division	Sharing objects into groups. Division as grouping.	Division as grouping. Division as arrays.	Division with arrays. Division with a remainder. Short division (using concrete and pictorial).	Division with arrays Division with a remainder. Short division (up to 3 digits by 1).	Short division (up to 4 digits by 1 digit - use remainders in context).	Short Division Long division (up to 4 digits by 2 digits interpret remainders as number, fraction, decimals or rounding).

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Conceptual variation; different ways to ask children to solve $21+34$

Word problems: In year 3, there are 21 children and in year 4, there are 34 children. How many children in total? $21+34=55$. Prove it	$\begin{array}{r} 21 \\ +34 \\ \hline-31+34= \end{array}$	Missing digit	 oblems:
	-_-	10 s	1s
	Calculate the sum of twenty-one	() 0	(1)
		$\bigcirc \bigcirc$?
		?	5

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.
Physically taking away and removing objects from a whole
(ten frames, Numicon, cubes and other items such as

beanbags could be used). | Children to draw the concrete resources they are using |
| :--- |
| and cross out the correct amount. The bar model can |
| also be used. |

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Column method using base 10 .
48-7

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.

00000000 $0000 \mathrm{O} \leftrightarrows$

Children to present the ten frame pictorially and discuss what they did to make 10.

Children to represent the base 10 pictorially.

Find the difference between 8 and 5 .
$8-5$, the difference is \square
Children to explore why
$9-6=8-5=7-4$ have the same difference.

Children to show how they can make 10 by partitioning the subtrahend.

$14-4=10$
$10-1=9$
Column method or children could count back 7 .

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Conceptual variation; different ways to ask children to solve 6×23

23	23	23	23	23	23

?

Mai had to swim 23 lengths, 6 times a week. How many lengths did she swim in one week?	Find the product of 6 and 23$\begin{aligned} & 6 \times 23= \\ & \mathbf{m}_{-}^{-1}=6 \times 23 \end{aligned}$	What is the calculation? What is the product?		
		100s	10s	Is
With the counters, prove that 6×23 $=138$	$\begin{array}{r} i=6 \times 23 \\ 6 \\ \times \quad 23 \\ \hline \end{array}$		$\begin{aligned} & \hline 88 \\ & 88 \\ & 88 \\ & 88 \\ & 88 \end{aligned}$	$\begin{aligned} & \hline 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \\ & 000 \end{aligned}$

Calculation policy: Division

Key language: share, group, divide, divided by, half.

2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used.
$13 \div 4$
Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.
Sharing using place value counters.
$42 \div 3=14$

000000
10s 1s

10s	1s	$=14$	$\begin{array}{c\|c} \circ & \\ \hline 000000 \\ \hline 00000 \end{array}$	
			10s	1s
-	0000		-	
\bigcirc	0000		-	
-	0000		-	

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over.

Children to represent the place value counters pictorially.

$13 \div 4-3$ remainder 1

Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line.
'3 groups of 4 , with 1 left over'

Children to be able to make sense of the place value counters and write calculations to show the process.
$42 \div 3$
$42=30+12$
$30 \div 3=10$
$12 \div 3=4$
$10+4=14$

Represent the place value counters pictorially.

Children to the calculation using the short division scaffold.

${ }_{5}^{123}$

1. Make 615 with place value counters.
2. How many groups of 5 hundreds can you make with 6 hundred counters?
3. Exchange 1 hundred for 10 tens.
4. How many groups of 5 tens can you make with 11 ten counters?
5. Exchange 1 ten for 10 ones.
6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters
$2544 \div 12$

1000s	100s	10s	15
\bigcirc	8000	0000	0000
1000s	100s	10s	Is
		000	उणర0

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds
into groups of 12 which leaves with 1 hundred.

Conceptual variation; different ways to ask children to solve $615 \div 5$

Using the part whole model below, how can you divide 615 by 5 without using	I have £615 and share it equally between 5 bank accounts. How much	$5 \longdiv { 6 1 5 }$	What is the cal What is the an	culation? wer?	
615	615 pupils need to be put into 5	$615 \div 5=$	100 s	10s	15
	groups. How many will be in each group?	$\mathbf{i}_{\mathbf{-}}^{\mathbf{i}}=615 \div 5$	\% ${ }_{*}^{*}$	150000	

