Calculation Policy Dorchester Primary School

Written: April 2023 Review April 2026

	<u>Year 1</u>	<u>Year 2</u>	<u>Year 3</u>	<u>Year 4</u>	<u>Year 5</u>	<u>Year 6</u>
<u>Addition</u>	Combining two parts to make a whole (part-part-whole model). Starting at the bigger number and counting on. Regrouping to make 10.	Adding three single digits. Expanded column method (no regrouping).	Column method with regrouping (up to 3 digits).	Column method with regrouping (up to 4 digits).	Column method with regrouping (with more that 4 digits including decimals).	Column method with regrouping (with more than 4 digits including decimals).
<u>Subtraction</u>	Taking away ones. Counting back. Finding the difference. Making 10.	Counting back. Finding the difference. Making 10. Partitioning smallest number to subtract.	Column method with regrouping (up to 3 digits).	Column method with regrouping (up to 4 digits)	Column method with regrouping (with more than 4 digits including decimals)	Column method with regrouping (with more than 4 digits including decimals)
<u>Multiplication</u>	Doubling. Counting in multiples of 2, 5 and 10. Arrays (with support.)	Doubling. Counting in multiples of 2, 3, 5 and 10. Repeated addition. Arrays showing commutative law.	Counting in multiples of 2, 3, 4, 5, 8 and 10. Repeated addition. Arrays. Grid method.	Column multiplication (2 and 3 digit x 1 digit)	Column multiplication (up to 4 digit x 1 or 2 digits)	Column multiplication (multi-digit up to 4 digits by 2 digits)
<u>Division</u>	Sharing objects into groups. Division as grouping.	Division as grouping. Division as arrays.	Division with arrays. Division with a remainder. Short division (using concrete and pictorial).	Division with arrays Division with a remainder. Short division (up to 3 digits by 1).	Short division (up to 4 digits by 1 digit – use remainders in context).	Short Division Long division (up to 4 digits by 2 digits – interpret remainders as number, fraction, decimals or rounding).

Calculation policy: Addition

Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	4 + 3 = 7 Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4? What is the sum of 2 and 4? What is the total of 4 and 2? 4 + 2

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. 6+5	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
TO + O using base 10. Continue to develop understanding of partitioning and place value. 41 + 8	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$ \begin{array}{c} 41+8 \\ 41+8 \\ 40+9=49 \\ 40+9=40$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. 36 + 25 105 15 6 1	Chidlren to represent the base 10 in a place value chart. $ \begin{array}{c c} $	Looking for ways to make 10. 36 + 25 = 30 + 20 = 50 5 + 5 = 10 50 + 10 + 1 = 61 1 5 36 Formal method: $\frac{+25}{61}$ 1

Calculation policy: Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease.

Concrete	Pictorial	Abstract
Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used).	Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used.	4-3=
4 - 3 = 1	XXXX	4 3 ? 4 ? 3
Counting back (using number lines or number tracks) children start with 6 and count back 2. 6 - 2 = 4	Children to represent what they see pictorially e.g.	Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line
	12345678910	012345678910
		46

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used). Calculate the difference between 8 and 5.	Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5. 8 - 5, the difference is Children to explore why 9 - 6 = 8 - 5 = 7 - 4 have the same difference.
Making 10 using ten frames. 14 - 5 - 4 - 1 - 4 - 1 - 4 - 1	Children to present the ten frame pictorially and discuss what they did to make 10.	Children to show how they can make 10 by partitioning the subtrahend. $14 - 5 = 9$ $4 \qquad 1$ $14 - 4 = 10$ $10 - 1 = 9$
Column method using base 10. 48-7 10s 1s 10s 1s 44 1	Children to represent the base 10 pictorially.	Column method or children could count back 7. 48 - 7 41

Calculation policy: Multiplication

Key language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition 3 × 4 4 + 4 + 4 There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	3 × 4 = 12 4 + 4 + 4 = 12
Number lines to show repeated groups- 3 × 4	Represent this pictorially alongside a number line e.g.:	Abstract number line showing three jumps of four. $3 \times 4 = 12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $10 = 2 \times 5$ $5 \times 2 = 10$ 2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5
Partition to multiply using Numicon, base 10 or Cuisenaire rods. 4 × 15	Children to represent the concrete manipulatives pictorially.	Children to be encouraged to show the steps they have taken. 4×15 $10 \times 4 = 40$ $5 \times 4 = 20$ 40 + 20 = 60 A number line can also be used 40 + 40 = 100
Formal column method with place value counters (base 10 can also be used.) 3 × 23	Children to represent the counters pictorially. $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Children to record what it is they are doing to show understanding. 3×23 $3 \times 20 = 60$ $3 \times 3 = 9$ 20 3 $60 + 9 = 6923\frac{\times 3}{69}$

Formal column method with place value counters 6×23 100s 10s 1s 000 000 000 000 0000 000 000 000 000 0000 000 000 000 000 000 000	e.g. the image below.	the counters/base 10, pictorially	Formal written method $6 \times 23 =$ 23 $\times 6$ 138 11 $\frac{\times 26}{-744}$ $\frac{\times 26}{-744}$ $\frac{\times 26}{-744}$ $\frac{\times 26}{-744}$ $\frac{\times 26}{-744}$
23 23 23 23 23 23 a we How one v	had to swim 23 lengths, 6 times eek. many lengths did she swim in week? the counters, prove that 6 x 23	Find the product of 6 and 23 $6 \times 23 =$ 6×23 6×23 6×23 6×23 6×23 5×23 6×23 $\times 23 \times 6$	Answer: 3224 cen to solve 6 × 23 What is the calculation? What is the product? 100s 10s 1s 000 000 000 000 000 000 000 0

Calculation policy: Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. 6 + 2	Represent the sharing pictorially.	6 ÷ 2 = 3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ -2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted. $ \begin{array}{r} -z & -2 & -2 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 3 & groups \\ \end{array} $

 2d + 1d with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used. 13 ÷ 4 Use of lollipop sticks to form wholes- squares are made because we are dividing by 4. 	Children to represent the lollipop sticks pictorially.	 13 ÷ 4 - 3 remainder 1 Children should be encouraged to use their times table facts; they could also represent repeated addition on a number line. '3 groups of 4, with 1 left over'
There are 3 whole squares, with 1 left over.	There are 3 whole squares, with 1 left over.	
Sharing using place value counters. $42 \div 3 = 14$	Children to represent the place value counters pictorially.	Children to be able to make sense of the place value counters and write calculations to show the process.
IOs Is IOs Is	8888 , 8888 80 10s 15	$42 \div 3$ 42 = 30 + 12 $30 \div 3 = 10$
	0 0000	$12 \div 3 = 4$ 10 + 4 = 14
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0000	

Short division using place value counters to group. 615 ÷ 5

1. Make 615 with place value counters.

2. How many groups of 5 hundreds can you make with 6 hundred counters?

3. Exchange 1 hundred for 10 tens.

4. How many groups of 5 tens can you make with 11 ten counters?

5. Exchange 1 ten for 10 ones.

6. How many groups of 5 ones can you make with 15 ones?

Long division using place value counters 2544 ÷ 12

1000s	100s	10s	1s	
00	0000	0000	0000	e e
1000s	100s	10s	1s	
		0000	0000	
	0000			

We can't group 2 thousands into groups of 12 so will exchange them.

We can group 24 hundreds into groups of 12 which leaves with 1 hundred.

$$12 \boxed{2544} \\ \underline{24} \\ 1$$

Represent the place value counters pictorially.

105

15

5000

3

1005

Children to the calculation using the short division scaffold.

